Mathematics: analysis and approached Higher level	Name	
Paper 1		
Date:		
2 hours		

Instructions to candidates

- Write your name in the box above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your name on each answer sheet and attach them to this examination paper.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.
- A clean copy of the mathematics: analysis and approaches HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [110 marks].

exam: 12 pages

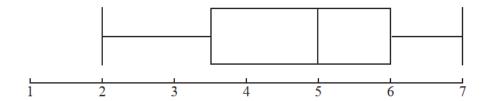
Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A (56 marks)

Answer all questions in the boxes provided. Working may be continued below the lines, if necessary.

1. [Maximum mark: 5]

The box and whisker diagram below illustrates the IB grades for a group of 20 students. IB grades are an integer from 1 to 7. The mode grade is 6.



(a) Write down the median grade.

[1]

(b) Find the number of students who obtained a grade greater than 3.

[2]

(c) Determine, with a reason, the maximum number of students who could obtain a grade of 7.

[2]

The angle θ lies in the first quadrant and $\sin \theta = \frac{1}{3}$.

(a) Write down the value of $\cos \theta$. [1]

- 3 -

- (b) Find the value of $\cos 2\theta$. [2]
- (c) Find the value of $\tan 2\theta$, giving your answer in the form $\frac{a\sqrt{b}}{c}$ where $a,b,c\in\mathbb{Z}^+$. [3]

	 	• • • • • • • • • • • • • • • • • • • •
	 	• • • • • • • • • • • • • • • • • • • •
	 	• • • • • • • • • • • • • • • • • • • •
	 	• • • • • • • • • • • • • • • • • • • •
	 	• • • • • • • • • • • • • • • • • • • •

If
$$y = x^2 \ln(x)$$
,

- (a) find the *x*-coordinate of the point M where $\frac{dy}{dx} = 0$; [3]
- (b) determine whether M is a maximum or minimum point. [3]

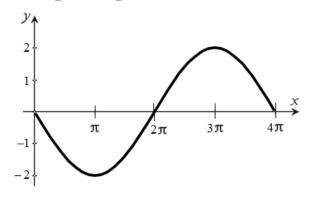
A game consists of a contestant rolling three fair six-sided dice. If a 4, 5 or 6 turns up on any of the three dice, then the contestant loses \$2. If none of the dice turn up a 4, 5 or 6, then the contestant wins \$20.

(a) Show that the contestant expects to win \$3 if the contestant plays the game four times. [4] One change is made to the game. If none of the dice turn up a 4, 5 or 6, then the contestant wins x dollars.

(b)	Find the value of x so that the game is fair.	[3]

The graph of $f(x) = a\cos[b(x-\pi)]$ for the interval $0 \le x \le 4\pi$ is shown below.

- 6 -



(a) Write down the value of a and the value of b.

[2]

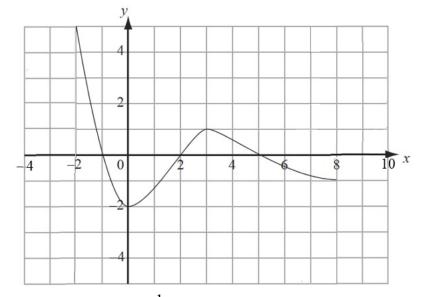
(b) Find the gradient of the graph of f at $x = \frac{3\pi}{2}$.

[3]

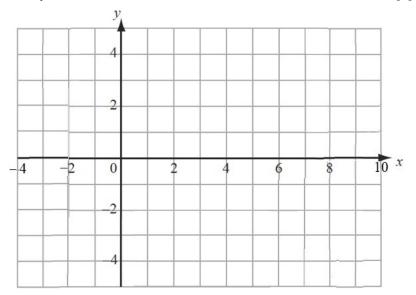
(c) Given that $0 \le c \le 4\pi$, explain why $\int_{c}^{4\pi-c} f(x) dx = 0$. [2]

• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	

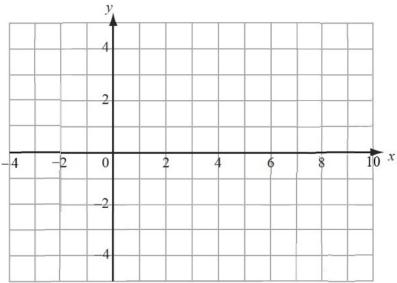
The graph of y = g(x) is shown.



(a) On the set of axes below, sketch the graph of $y = \frac{1}{g(x)}$, clearly showing any asymptotes and indicating the coordinates of any local maxima or minima. [4]



(b) On the set of axes below, sketch the graph of y = g(2x-2), clearly showing any asymptotes and indicating the coordinates of any local maxima or minima. [3]



Prove, using mathematical induction, that for any positive integer n,

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$
 [6]

-8-

Solve the following differential equation. Write your solution as an equation where y is expressed in terms of x.

$$\frac{\mathrm{d}y}{\mathrm{d}x} + 3x^2y = \left(1 + 3x^2\right)\mathrm{e}^x$$
 [7]

 •
 •
•
•
 •
•

			_
9.	[Maximum]		1
ч	111/12 X ITT1 ITT1	mark	21

Given that $k > 0$, find the values of k such that $kx^2 - 4x + k + 3 > 0$ for all real values of x .	[5]
--	-----

[4]

Do **not** write solutions on this page.

Section B (54 marks)

Answer **all** the questions on the answer sheets provided. Please start each question on a new page.

10. [Maximum mark: 16]

In a class of 85, all of the students must study French or Spanish. Some of the students study both French and Spanish. 51 students study French and 43 students study Spanish.

- Find the number of students who study **both** French and Spanish. (a)
 - (ii) Write down the number of students who study **only** Spanish.
 - (iii) Write down the number of students who study **only** French.

One student is selected at random from the class.

- Find the probability that the student studies **only** one language.
- (c) Given that the student selected studies **only** one language, find the probability that
 - (i) the student studies Spanish;
 - the student studies French.

[6]

Let F be the event that a student studies French and S be the event that a student studies Spanish.

- Determine, with explanation, whether
 - F and S are **mutually exclusive** events; (i)
 - (ii) F and S are **independent** events. [6]

Do not write solutions on this page.

11. [Maximum mark: 17]

Consider the complex numbers $z_1 = 2cis \frac{5\pi}{6}$ and $z_2 = -1 + i$

- (a) Calculate $\frac{z_1}{z_2}$. Express your answer in both modulus-argument form and Cartesian form. [8]
- (b) Prove that $\sin \theta = \cos \left(\frac{\pi}{2} \theta \right)$. [3]
- (c) Using your results from (a) and (b), find the exact value of $\tan \frac{5\pi}{12}$. Express your answer In the form $a+\sqrt{b}$, where $a,b\in\mathbb{Z}^+$. [6]

12. [Maximum mark: 21]

- (a) Obtain the Maclaurin series for $f(x) = e^{2x}$ up to, and including, the x^3 term. [5]
- (b) Let $g(x) = \tan x$.
 - (i) Find an expression for g'(x), g''(x) and g'''(x).
 - (ii) Hence, obtain the Maclaurin series for g(x) up to, and including, the x^3 term. [9]
- (c) Hence, or otherwise, obtain the Maclaurin series for $e^{2x} \tan x$ up to, and including, the x^3 term. [2]
- (d) Find the first four non-zero terms in the Maclaurin series for $2e^{2x} \tan x + e^{2x} \sec^2 x$. [5]